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Gravitational Entropy in Cosmological Models
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We discuss whether an appropriately defined dimensionless scalar function might be an
acceptable candidate for the gravitational entropy, by explicitly considering Szekeres
and Bianchi type VIh models that admit an isotropic singularity. We also briefly discuss
other possible gravitational entropy functions, including an appropriate measure of the
velocity dependent Bel-Robinson tensor.
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1. INTRODUCTION

Penrose (1979) has argued that the initial cosmological singularity must
be one of low entropy in order to explain the high isotropy of the observed
universe and to be consistent with the second law of thermodynamics. Since the
matter was presumably in thermal equilibrium at the initial singularity, this implies
low entropy in the gravitational field. Penrose has also conjectured that such a
gravitational entropy should be related to a suitable measure of the Weyl curvature.
The search for a suitable candidate for the “gravitational entropy” is therefore of
current interest, particularly in the approach to the initial cosmological singularity
(Tod, 1990; Goode et al., 1992). In the quiescent cosmological paradigm (Barrow,
1978) the universe began in a highly regular state and subsequently evolved
towards irregularity.

Penrose (1979) originally proposed that the the Weyl tensor is zero at the
big bang singularity, implying the subsequent evolution is close to a Friedmann–
Robertson–Walker (FRW) model. However, this requirement is too strong. For
example, in perfect fluid spacetimes Anguige and Tod (1999) have proven unique-
ness results that show that if the Weyl tensor is zero at the big bang, then the

1 Department of Mathematics and Statistics, Dalhousie University, Halifax,
Nova Scotia, Canada.

2 To who correspondence should be addressed at Department of Mathematics and Statistics, Dalhousie
University, Halifax, Nova Scotia, Canada; e-mail: pelavas@mathstat.dal.ca.

1301
0020-7748/06/0700-1301/0 C© 2006 Springer Science+Business Media, Inc.



1302 Pelavas and Coley

spacetime geometry must be exactly FRW in a neighbourhood of the big-bang.
This has motivated the idea that some appropriate dimensionless scalar is asymp-
totically zero. The search for a gravitational entropy then reduces to a search for
this scalar function. Quiescent cosmology and the ideas of Penrose provide the
motivation of the definition of an isotropic singularity (Goode and Wainwright,
1985); essentially a spacetime admits an isotropic singularity if the ‘physical’
spacetime is conformally related to an ‘unphysical’ spacetime such that there ex-
ists a time function T with the property that at T = 0 the conformal factor vanishes
(corresponding to the cosmological singularity) but that the conformally related
metric is regular. It was proven in Goode and Wainwright (1985) that in the class
of models with an isotropic singularity P → 0 as T → 0, where P is the ratio of
the Weyl curvature squared to the Ricci curvature squared (see Eq. (3) below).

Recently, Lake and Pelavas (LP) (2000) considered a class of “gravita-
tional epoch” functions that are a dimensionless scalar field constructed from the
Riemann tensor and its covariant derivatives only (such as, for example, P ). They
discussed whether such functions can act as a “gravitational entropy” by determin-
ing whether it is monotone along a suitable set of (smooth) timelike trajectories. In
particular, LP considered the set of homothetic trajectories of a self-similar space-
time (since such spacetimes are believed to play an important role in describing
the asymptotic properties of more general models (Carr and Coley, 1999)). They
showed that the Lie derivative of any “dimensionless” scalar along a homothetic
vector field (HVF) is zero, and concluded that such functions are not acceptable
candidates for the gravitational entropy. They suggested considering other options
for a “gravitational epoch” function. Other dimensionless scalars constructed from
the Riemann tensor and its covariant derivatives have been considered (see, for
example, Goode et al., 1992). Other alternatives, such as those involving the
Bel-Robinson tensor, were suggested in Pelavas and Lake (1998).

In this paper, by explicitly considering classes of Szekeres and Bianchi VIh
models that admit an isotropic singularity, we revisit the conclusion of LP that
P (for example) is not an acceptable candidate for the gravitational entropy.
First, we take the view, unlike that taken in LP, that a purely gravitational entropy
selects spacetimes as being of cosmological interest according to a thermodynamic
principle. For example, in General Relativity (GR) there exist solutions for which
the physical energy density is negative; however, we do not disregard GR or the
notion of energy density within GR – rather, we use the criterion of negative
energy density to characterize those solutions which are not physical. Second,
homothetically self-similar spacetimes represent asymptotic equilibrium states
(since they describe the asymptotic properties of more general models (Carr and
Coley, 1999)), and the LP result is perhaps consistent with this interpretation
since the entropy does not change in these equilibrium models, and perhaps
consequently supports the idea that P (for example) represents a “gravitational
entropy.” Therefore, we will investigate the behavior of P asymptotically as the
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self-similar solution is approached in cosmological models. We also consider
various other options for a purely “gravitational entropy,” including an appropriate
measure of the Bel-Robinson tensor.

2. SZEKERES MODEL

We consider the class II Szekeres solutions, which are spatially inhomoge-
neous models with irrotational dust as a source. A comprehensive analysis of the
Szekeres models can be found in Goode and Wainwright (1982a). In the nota-
tion of Goode and Wainwright we set k = 0 = β−, the line-element in comoving
coordinates has the form

ds2 = T 4[−dT 2 + dx2 + dy2 + (A − β+T 2)2dz2] (1)

where

A = a(z) + b(z)x + c(z)y − 5β+(z)(x2 + y2). (2)

The fluid 4-velocity is u = T −2 ∂
∂T

and the energy density is µ = 12T −6[1 −
(β+/A)T 2]−1. These cosmological models admit an isotropic singularity at T = 0;
moreover, it has been shown (Goode and Wainwright, 1982b) that the general
Szekeres class with β− = 0 also admits an isotropic singularity. If β+ = 0 in (1),
then we obtain the associated flat FRW dust solution.

The standard gravitational epoch function, P , for (1) is

P ≡ CabcdC
abcd

RabRab
= 4

3

T 4β2
+

A2
. (3)

This has been shown (Goode et al., 1992) to behave appropriately in these models;
i.e., P is monotonically increasing away from the isotropic singularity. Perhaps
an alternative choice is to use the Bel-Robinson tensor (Pelavas and Lake, 1998)
to construct a velocity dependent gravitational epoch function. Using the fluid
4-velocity, we construct the positive scalar

W = Tabcdu
aubucud = 24β2

+
T 8(β+T 2 − A)2

(4)

which has the same units as CabcdC
abcd , and hence to obtain a dimensionless

scalar we normalize by the square of µ = Tabu
aub; i.e.,

P̃ = W

µ2
= T 4β2

+
6A2

. (5)

Noting that in this case we have P̃ = P/8, then P̃ also behaves appropriately
as the isotropic singularity is approached. This relationship is a consequence
of the following two facts. First, the magnetic part of Weyl is zero, Hab = 0,
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therefore CabcdC
abcd is equivalent to W modulo a positive constant. Second, the

Ricci invariant RabR
ab = R2 and for dust R = µ. In these models, the choices are

limited for constructing dimensionless ratios of zeroth order invariants since all
Carminati-McLenaghan (CM) invariants3 can be expressed in terms of the Ricci
scalar R and Re(w1) ∼ CabcdC

abcd ,

R = 12A

T 6(A − β+T 2)
, w1 = 24β2

+
T 8(A − β+T 2)2

(6)

with syzygies for the Ricci invariants,

r1 = 3

16
R2, r2 = 3

64
R3, r3 = 21

1024
R4. (7)

Since these spacetimes are Petrov type D, the Weyl invariants satisfy 6w2
2 =

w3
1. The mixed invariants give syzygies

m1 = 0, m2 = 1

16
w1R

2 = m3, m4 = − 1

128
w1R

3, m5 = 1

16
w2R

2. (8)

To study the Lie derivative of P (or P̃ ) along a HVF we first recall a well
known result (Carr and Coley, 1999). Any FRW model with an equation of state
p = −µ/3 admits a timelike HVF. In addition, only the flat FRW models with
an equation of state p = αµ and power law dependence on the scale function
admit a HVF. If β+ is set to zero in (1), then the resulting flat FRW model is in
non-standard coordinates; although there exists a HVF, finding it in this coordinate
system is difficult due to the presence of the functions a, b and c. Determining
a coordinate transformation into more familiar coordinates, where HVF’s can
easily be found, is also difficult. We use the following simplifying assumptions
in (1), a = 1, b = 0, c = 0, and consider deviations from flat FRW by redefining
β+ → εβ+ for small ε. It can be shown that

ξ = φ

3

(
T

∂

∂T
+ x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
(9)

is a HVF in the associated flat FRW model and deviates4 from homothetic-
ity in (1) to first order in ε. Since limT →0(Łξ gab − 2φgab) = 0 we find that
(9) becomes a HVF as the isotropic singularity is approached. In this limit
then ŁξP = 0, as expected (Pelavas and Lake, 2000), and so P approaches a
constant. This type of behavior is desirable if we would like to interpret P ,
in some sense, as a gravitational entropy possessing a critical point at early
times in the evolution. Moreover, requiring that P be monotonically increas-
ing at early times along a timelike ξ (ŁξP > 0) places restrictions on β+.

3 We note that in this case any complex CM invariants have vanishing imaginary part.
4 As a special case, if β+ = C/z2 then (9) is also a HVF of (1); therefore, as a consequence of Pelavas

and Lake (2000), Łξ P = 0.
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Since

ŁξP = 8

9

φε2T 4β+(2β+ + zβ
′
+)

(1 − εβ+R2)3
= 8

9
φT 4β+(2β+ + zβ

′
+)ε2 + O(ε3) (10)

and

ξ · ξ =
(

φ

3

)2

T 4

{
−T 2 + R2

5
+ [1 − εβ+(R2 + T 2)]2z2

}
(11)

where R2 ≡ 5(x2 + y2), then as T → 0, ξ remains timelike if R = 0 and z → 0
subject to the requirement that limz→0 zβ+ be bounded. Assuming zβ+ is analytic
near z = 0 gives the form

β+ = b0

z
+ b1 + b2z + · · · (12)

To leading order in ε we factor β+ from (10) and use (12) to obtain limz→0(2 +
zβ

′
+/β+) = 1; thus ŁξP > 0 along a timelike ξ .

3. BIANCHI VIH MODEL

It has been shown (Wainwright and Anderson, 1984) for the Bianchi VIh
class that a choice of parameters can result in the quasi-isotropic stage beginning
at the initial singularity, giving rise to an isotropic singularity for these spacetimes.
In the notation of Wainwright and Anderson (1984), we set αs = 0 and αm = 1,
so that the line-element in conformal time coordinates is

ds2 = τ 4/(3γ−2)
(−A2(γ−1)dτ 2 + A2q1dx2 + A2q2e2r[s+(3γ−2)]xdy2

+A2q3e2r[s−(3γ−2)]xdz2
)

(13)

where

A2−γ = 1 + αcτ
2, q1 = γ

2
, q2 = 2 − γ + s

4
, q3 = 2 − γ − s

4
,

s2 = (3γ + 2)(2 − γ ), r2 = (3γ + 2)αc

4(2 − γ )(3γ − 2)2
. (14)

These spacetimes have a perfect fluid source with equation of state p =
(γ − 1)µ, 1 ≤ γ < 2. The fluid 4-velocity is u = A1−γ τ−2/(3γ−2) ∂

∂τ
and the en-

ergy density is µ = 12A−γ (3γ − 2)−2τ−6γ /(3γ−2). Since αs has been set to zero,
then the isotropic singularity occurs at τ = 0. The parameter αc determines the
curvature of the spacelike hypersurfaces orthogonal to u; if αc = 0 we obtain the
flat FRW solution. We shall consider deviations about this flat FRW model by
assuming αc is small.
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To leading order in αc, the gravitational epoch function for (13) is

P = 4

3

γ 2(3γ − 2)2τ 4

(γ − 2)2[3(γ − 1)2 + 1]
α2

c + O
(
α3

c

)
, (15)

which is positive and P → 0 as τ → 0+. Using the Bel-Robinson tensor and the
energy density we find

P̃ = γ 2(3γ − 2)2τ 4

6(γ − 2)2
α2

c + O
(
α3

c

)
. (16)

Consequently to leading order in αc we have that P̃ = [3(γ − 1)2 + 1]P/8, and
again P and P̃ are directly proportional. Unlike the Szekeres class above, the
magnetic part of the Weyl tensor with respect to u does not vanish here unless5

γ = 4/3. This relationship between P and P̃ becomes evident if we consider the
expansions for the relevant invariants of the electric and magnetic parts of Weyl

EabE
ab = 24γ 2

(γ − 2)2(3γ − 2)2τ 8/(3γ−2)
α2

c + O
(
α3

c

)
,

(17)

HabH
ab = 2γ 2(3γ + 2)(3γ − 4)2

(2 − γ )3(3γ − 2)2τ 6(2−γ )/(3γ−2)
α3

c + O
(
α4

c

)
.

For αc small, HabH
ab ∼ 0 and CabcdC

abcd ∼ EabE
ab ∼ W , additionally

Einstein’s equations give RabR
ab = [3(γ − 1)2 + 1]µ2, the relationship now fol-

lows.
As αc → 0 or if τ → 0+, the vector

ξ = φ

3

(3γ − 2)

γ

(
τ

∂

∂τ
+ x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
(18)

gives (Łξ gab − 2φgab) → 0 separately in both limits; therefore, ξ is a HVF in the
flat FRW limit or as the isotropic singularity is approached. Setting x = y = z = 0
we obtain for the magnitude of ξ

ξ · ξ = −
(

φ

3

)2 (3γ − 2)2

γ 2
τ 6γ /(3γ−2)A2(γ−1); (19)

thus by continuity ξ will be timelike in some neighborhood of x = y = z = 0
arbitrarily close to the isotropic singularity. To leading order in αc, the behavior
of P along ξ is given by

ŁξP = 16

9

φγ (3γ − 2)3τ 4

(γ − 2)2[3(γ − 1)2 + 1]
α2

c + O
(
α3

c

)
(20)

5 Hab will also vanish if αc = 0.
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which is positive for 1 ≤ γ < 2; hence P will be monotonically increasing at
early times along the timelike ξ , and as τ → 0+ then P will tend to a constant
(which in these models is zero).

We now show that the Weyl curvature hypothesis does not necessarily put
restrictions on the Petrov type. In this class of spacetimes the Weyl invariants
of CM have vanishing imaginary parts, and in general do not always satisfy the
syzygy w3

1 − 6w2
2 = 0; therefore, the metric(13) is almost always Petrov type I.

However for 4/3 < γ < 2 there always exists a time τ∗ where the Petrov type
specializes to either II or D; this is given by

τ∗ = 3

2

2 − γ√
2αc(3γ − 4)

, (21)

otherwise the Petrov type is I. When γ = 4/3 the syzygy is satisfied and by
choosing the aligned Newman-Penrose tetrad

	 = A−2/3 ∂

∂τ
+ ∂

∂z
, n = 1

2t2

(
∂

∂τ
− A2/3 ∂

∂z

)
,

(22)

m = 1√
2τA2/3

(
∂

∂x
+ ie−4rx ∂

∂y

)
we find that this is in fact Petrov type D for all τ > 0. It would appear that an
intermediate algebraic specialization of the Weyl tensor during the evolution does
not affect the increasing anisotropy that is indicated by the gravitational epoch
function (15); indeed, these spacetimes begin with small anisotropy close to the
isotropic singularity and approach the anisotropic vacuum plane wave metrics at
late times.

As is shown in Pelavas and Lake (2000), any dimensionless ratio of in-
variants is constant along a HVF. Therefore, depending on its monotonicity, it
may also serve as a gravitational epoch function when the cosmological model
admits an asymptotic timelike HVF. Here we illustrate this point by consider-
ing a dimensionless ratio of differential invariants; to second order in αc we
have

P1 = ∇aCbcde∇aCbcde

∇aRbc∇aRbc
= 40

9

(3γ − 2)2τ 4

(γ − 2)2[9(γ − 1)2 + 5]
α2

c + O
(
α3

c

)
(23)

and

ŁξP1 = 160

27

φ(3γ − 2)3τ 4

γ (γ − 2)2[9(γ − 1)2 + 5]
α2

c + O
(
α3

c

)
. (24)

Clearly as τ → 0+, P1 → 0 and from (24) it is also monotonically increasing
for 1 ≤ γ < 2. Nevertheless, the invariants of (23) diverge in a similar manner to
the invariants of (15); i.e., as τ → 0+, ∇aCbcde∇aCbcde and ∇aRbc∇aRbc → −∞.
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4. DISCUSSION

We have considered a class of spatially inhomogeneous Szekeres solutions
with the line-element (1). We show that there exists a HVF (9) as the isotropic sin-
gularity is approached, and show that ŁξP = 0 in this limit, so that P approaches
a constant as expected (Pelavas and Lake, 2000). Moreover, to leading order we
show that ŁξP > 0 along an approach to the singularity in which the HVF ξ

remains timelike; i.e., P is monotonically increasing at early times along ξ . We
then considered a class of Bianchi VIh models with an isotropic singularity with
line-element (13), parameterized by αc (which measures deviations about the flat
FRW model). Assuming αc is small, to leading order we display a vector ξ which
is a HVF in the flat FRW limit, and show that the gravitational epoch function
P → 0 as the isotropic singularity is approached and that P is monotonically
increasing at early times along timelike ξ .

Therefore, in the isotropic singularity cosmological models we have studied
we have found that P → 0 asymptotically as the self-similar cosmological model is
approached, in support of the idea that these homothetically self-similar spacetimes
represent asymptotic equilibrium states. Moreover, we have provided evidence that
P is monotonically increasing as the models evolve away from these equilibrium
states, which perhaps lends support to the idea that P represents a “gravitational
entropy.”

We also found that for both the Szekeres models and the Bianchi VIh models
(to leading order in αc), the standard gravitational epoch function P , and the nor-
malized Bel-Robinson epoch function P̃ , are proportional (and hence equivalent as
gravitational epoch functions). The question remains as to whether this will be true
for all models with an isotropic singularity. In general, for a perfect fluid source
we have that P̃ ∼ (E2 + H 2)/µ2 and P ∼ (E2 − H 2)/(µ2 + 3p2). Assuming
an equation of state of the form p = αµ gives P ∼ (E2 − H 2)/[(1 + 3α2)µ2].
Clearly if H 2 is negligible with respect to E2, then P and P̃ will be effectively
proportional. It may also be of interest to consider cosmological models where P

and P̃ differ. In particular, whenever the Petrov type is III, N or O then all zeroth
order Weyl invariants vanish, and hence P vanishes but P̃ does not necessarily
vanish. An example of such cosmological models are the Oleson (2003) solutions,
which are Petrov type N with a perfect fluid source. In these models P vanishes
but P̃ does not; it is of interest to determine if these models can admit an isotropic
singularity. We may also consider the possibility that the denominator of P van-
ishes. It is known that all zeroth order Ricci invariants vanish in spacetimes of
Plebański-Petrov (PP)-type N or O (Stephani et al., 2003), although PP-N type
spacetimes are unphysical since they cannot satisfy the weak energy conditions.
Such spacetimes might be regarded as late time asymptotic states of some cosmo-
logical models, and in this case a dominance of the Weyl invariant over the Ricci
invariant would likely lead to a monotonically increasing P asymptotically.
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A classic problem in cosmology is finding a way to explain the very high
degree of isotropy observed in the cosmic microwave background. In GR cos-
mological models admitting an isotropic singularity are of zero measure, so
that isotropy is a special rather than generic feature of cosmological models.
Hence, a dynamical mechanism which is able to produce isotropy, such as in-
flation, is needed. However, inflation requires sufficiently homogeneous initial
data in order to begin (Kolb and Turner, 1990); hence the isotropy problem re-
mains open to debate in standard cosmology. Recently, it has been argued that
an isotropic singularity is typical in brane world cosmological models (Coley,
2002a,b, 2004). Hence brane cosmology would have the very attractive feature
that it provides for the necessary sufficiently smooth initial conditions which
might, in turn, be consistent with entropy arguments and the second law of
thermodynamics.
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